88 research outputs found

    SAT-Based Synthesis Methods for Safety Specs

    Full text link
    Automatic synthesis of hardware components from declarative specifications is an ambitious endeavor in computer aided design. Existing synthesis algorithms are often implemented with Binary Decision Diagrams (BDDs), inheriting their scalability limitations. Instead of BDDs, we propose several new methods to synthesize finite-state systems from safety specifications using decision procedures for the satisfiability of quantified and unquantified Boolean formulas (SAT-, QBF- and EPR-solvers). The presented approaches are based on computational learning, templates, or reduction to first-order logic. We also present an efficient parallelization, and optimizations to utilize reachability information and incremental solving. Finally, we compare all methods in an extensive case study. Our new methods outperform BDDs and other existing work on some classes of benchmarks, and our parallelization achieves a super-linear speedup. This is an extended version of [5], featuring an additional appendix.Comment: Extended version of a paper at VMCAI'1

    Incremental QBF Solving

    Full text link
    We consider the problem of incrementally solving a sequence of quantified Boolean formulae (QBF). Incremental solving aims at using information learned from one formula in the process of solving the next formulae in the sequence. Based on a general overview of the problem and related challenges, we present an approach to incremental QBF solving which is application-independent and hence applicable to QBF encodings of arbitrary problems. We implemented this approach in our incremental search-based QBF solver DepQBF and report on implementation details. Experimental results illustrate the potential benefits of incremental solving in QBF-based workflows.Comment: revision (camera-ready, to appear in the proceedings of CP 2014, LNCS, Springer

    On QBF Proofs and Preprocessing

    Full text link
    QBFs (quantified boolean formulas), which are a superset of propositional formulas, provide a canonical representation for PSPACE problems. To overcome the inherent complexity of QBF, significant effort has been invested in developing QBF solvers as well as the underlying proof systems. At the same time, formula preprocessing is crucial for the application of QBF solvers. This paper focuses on a missing link in currently-available technology: How to obtain a certificate (e.g. proof) for a formula that had been preprocessed before it was given to a solver? The paper targets a suite of commonly-used preprocessing techniques and shows how to reconstruct certificates for them. On the negative side, the paper discusses certain limitations of the currently-used proof systems in the light of preprocessing. The presented techniques were implemented and evaluated in the state-of-the-art QBF preprocessor bloqqer.Comment: LPAR 201

    The Frequency Dependence of Critical-velocity Behavior in Oscillatory Flow of Superfluid Helium-4 Through a 2-micrometer by 2-micrometer Aperture in a Thin Foil

    Full text link
    The critical-velocity behavior of oscillatory superfluid Helium-4 flow through a 2-micrometer by 2-micrometer aperture in a 0.1-micrometer-thick foil has been studied from 0.36 K to 2.10 K at frequencies from less than 50 Hz up to above 1880 Hz. The pressure remained less than 0.5 bar. In early runs during which the frequency remained below 400 Hz, the critical velocity was a nearly-linearly decreasing function of increasing temperature throughout the region of temperature studied. In runs at the lowest frequencies, isolated 2 Pi phase slips could be observed at the onset of dissipation. In runs with frequencies higher than 400 Hz, downward curvature was observed in the decrease of critical velocity with increasing temperature. In addition, above 500 Hz an alteration in supercritical behavior was seen at the lower temperatures, involving the appearance of large energy-loss events. These irregular events typically lasted a few tens of half-cycles of oscillation and could involve hundreds of times more energy loss than would have occurred in a single complete 2 Pi phase slip at maximum flow. The temperatures at which this altered behavior was observed rose with frequency, from ~ 0.6 K and below, at 500 Hz, to ~ 1.0 K and below, at 1880 Hz.Comment: 35 pages, 13 figures, prequel to cond-mat/050203

    DepQBF 6.0: A Search-Based QBF Solver Beyond Traditional QCDCL

    Full text link
    We present the latest major release version 6.0 of the quantified Boolean formula (QBF) solver DepQBF, which is based on QCDCL. QCDCL is an extension of the conflict-driven clause learning (CDCL) paradigm implemented in state of the art propositional satisfiability (SAT) solvers. The Q-resolution calculus (QRES) is a QBF proof system which underlies QCDCL. QCDCL solvers can produce QRES proofs of QBFs in prenex conjunctive normal form (PCNF) as a byproduct of the solving process. In contrast to traditional QCDCL based on QRES, DepQBF 6.0 implements a variant of QCDCL which is based on a generalization of QRES. This generalization is due to a set of additional axioms and leaves the original Q-resolution rules unchanged. The generalization of QRES enables QCDCL to potentially produce exponentially shorter proofs than the traditional variant. We present an overview of the features implemented in DepQBF and report on experimental results which demonstrate the effectiveness of generalized QRES in QCDCL.Comment: 12 pages + appendix; to appear in the proceedings of CADE-26, LNCS, Springer, 201

    Mind the Gap - A Closer Look at the Security of Block Ciphers against Differential Cryptanalysis

    Get PDF
    Resistance against differential cryptanalysis is an important design criteria for any modern block cipher and most designs rely on finding some upper bound on probability of single differential characteristics. However, already at EUROCRYPT'91, Lai et al. comprehended that differential cryptanalysis rather uses differentials instead of single characteristics. In this paper, we consider exactly the gap between these two approaches and investigate this gap in the context of recent lightweight cryptographic primitives. This shows that for many recent designs like Midori, Skinny or Sparx one has to be careful as bounds from counting the number of active S-boxes only give an inaccurate evaluation of the best differential distinguishers. For several designs we found new differential distinguishers and show how this gap evolves. We found an 8-round differential distinguisher for Skinny-64 with a probability of 2−56.932−56.93, while the best single characteristic only suggests a probability of 2−722−72. Our approach is integrated into publicly available tools and can easily be used when developing new cryptographic primitives. Moreover, as differential cryptanalysis is critically dependent on the distribution over the keys for the probability of differentials, we provide experiments for some of these new differentials found, in order to confirm that our estimates for the probability are correct. While for Skinny-64 the distribution over the keys follows a Poisson distribution, as one would expect, we noticed that Speck-64 follows a bimodal distribution, and the distribution of Midori-64 suggests a large class of weak keys

    A Bit-Vector Differential Model for the Modular Addition by a Constant

    Get PDF
    ARX algorithms are a class of symmetric-key algorithms constructed by Addition, Rotation, and XOR, which achieve the best software performances in low-end microcontrollers. To evaluate the resistance of an ARX cipher against differential cryptanalysis and its variants, the recent automated methods employ constraint satisfaction solvers, such as SMT solvers, to search for optimal characteristics. The main difficulty to formulate this search as a constraint satisfaction problem is obtaining the differential models of the non-linear operations, that is, the constraints describing the differential probability of each non-linear operation of the cipher. While an efficient bit-vector differential model was obtained for the modular addition with two variable inputs, no differential model for the modular addition by a constant has been proposed so far, preventing ARX ciphers including this operation from being evaluated with automated methods. In this paper, we present the first bit-vector differential model for the n-bit modular addition by a constant input. Our model contains O(log2(n)) basic bit-vector constraints and describes the binary logarithm of the differential probability. We also represent an SMT-based automated method to look for differential characteristics of ARX, including constant additions, and we provide an open-source tool ArxPy to find ARX differential characteristics in a fully automated way. To provide some examples, we have searched for related-key differential characteristics of TEA, XTEA, HIGHT, and LEA, obtaining better results than previous works. Our differential model and our automated tool allow cipher designers to select the best constant inputs for modular additions and cryptanalysts to evaluate the resistance of ARX ciphers against differential attacks.acceptedVersio

    Adenovirus-mediated TA-p73β gene transfer increases chemosensitivity of human malignant melanomas

    Full text link
    Malignant melanoma is the most aggressive form of skin cancer and has proven to be highly resistant to conventional chemotherapy. Intriguingly, the p53 tumor suppressor, a main mediator of chemoresistance in other tumor types, is rarely mutated in melanoma. However, we have previously shown that anti-apoptotic isoforms of p73 (ΔTA-p73), another member of the p53 family, are overexpressed in metastatic melanomas. ΔTA-p73 can oppose the pro-apoptotic functions of p53 and full length p73, and thus it could contribute to melanoma chemoresistance. In this study, we use an efficient adenoviral-based gene transfer approach to introduce a transcriptionally active form of p73 (TA-p73β) in melanoma cells, with the objective of overcoming drug resistance. Interestingly, TA-p73β significantly sensitized 5 out of 7 aggressive melanoma cell lines to the standard therapeutic agents adriamycin and cisplatin. More importantly, TA-p73β displayed a synergistic effect in vivo allowing adriamycin or cisplatin to block melanoma cell growth in mouse xenograft models ( p < 0.05). In summary, our data show that Ad-mediated TA-p73β gene expression can markedly sensitize a subset of melanoma cell lines to adriamycin and cisplatin in vitro and in vivo , suggesting a new chemosensitization strategy for malignant melanomas.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44369/1/10495_2006_Article_3407.pd
    • …
    corecore